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Executive Summary

The study of vortices in Ginzburg-Landau theory has been relatively popular in the

past few decades. Both mathematicians and physicists have looked at these objects

from their respective perspectives. In particular, the work of Baptista, Maldonado, and

Manton in recent years has shown new ways to think about vortices as well as new ways

to create vortex solutions in certain settings.

This paper looks at a specific method used by Maldonado and Manton to create symmetric

vortex solutions on compact Riemann surfaces. Though their methodology is outlined

in their paper, much of the detail in the construction and well-definition of the solution

is glossed over. This paper briefly introduces the setting of the abelian Higgs model

and vortices before using complex analytic methods to fill in the gaps in Maldonado

and Manton’s paper. In particular, it motivates the well-definition of the construction.

Additionally, this paper also briefly touches on how this method may be applied to

generalizations of the model and on how other vortex solutions may be found.
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1.0 Introduction

Vortices correspond to states which minimize the Yang-Mills-Higgs energy functional

and may be defined on a variety of surfaces. The study of such objects has stemmed

from Ginzburg-Landau theory from physics, which describes superconductivity and

research in this area has been quite active in recent decades both from a mathematics

and physics viewpoint.

This paper focuses on vortices in the abelian Higgs model on Riemann surfaces, which

consist of a U(1) connection A on a line bundle as well as a section or Higgs field φ, and

aim to describe methods in which solutions may be found. In particular, a method of

constructing vortex solutions on compact Riemann surfaces using a method of

Maldonado and Manton [7] will be studied. Generalizations of this model suggested by

Manton in [8] will also be discussed.

2.0 Abelian Higgs Vortices

2.1 The Abelian Higgs Model

Let Σ be a Riemann surface, which is a connected 1-complex-dimensional manifold, with a

metric compatible with the complex structure. Locally, the complex coordinates z = x+iy

may be used and the metric may be written as

ds2 = Ωdz ∧ dz (1)

where Ω is a conformal factor. Additionally, suppose L is a U(1) line bundle on Σ.
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Given a U(1) connection A on L, it may be represented in coordinates by a real 1-form

A = Azdz+Azdz. A has curvature F = dA+A∧A, however since the gauge group U(1)

is abelian, the A ∧ A term vanishes, giving

F = Fzzdz ∧ dz = (∂zAz − ∂zAz)dz ∧ dz. (2)

Moreover, a section φ on L may locally be considered as a complex-valued function.

Lastly, suppose that the first Chern number of the bundle,

N =
1

2π

∫
Σ

F (3)

is a positive integer.

The Yang-Mills-Higgs energy functional in the abelian Higgs model is given by

E(A, φ) =

∫
Σ

[
(?F )2 +

1

Ω
|Dφ|2 + (1− |φ|2)2

]
i

2
Ωdz ∧ dz (4)

where ? is the Hodge star operator on Σ, and D is the gauge covariant derivative with

respect to the connection A. Alternatively, in coordinates, the functional reads

E(A, φ) =

∫
Σ

[(
−2iFzz

Ω

)2

+
1

Ω
(|Dzφ|2 + |Dzφ|2) + (1− |φ|2)2

]
i

2
Ωdz ∧ dz (5)

Completing the square using the first and last terms in the integral yields

E(A, φ) =

∫
Σ

[(
−2iFzz

Ω
− (1− |φ|2)

)2

+
1

Ω
(|Dzφ|2 + |Dzφ|2)

]
i

2
Ωdz ∧ dz

+

∫
Σ

[
− 4iFzz + 4iFzz|φ|2

]
i

2
dz ∧ dz

(6)
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Reducing the second term in equation (5) using a completing-the-square-like method then

gives

E(A, φ) =

∫
Σ

[(
−2iFzz

Ω
− (1− |φ|2)

)2

+
1

Ω
|Dzφ|2

]
i

2
Ωdz ∧ dz

+

∫
Σ

[
− 4iFzz + 4iFzz|φ|2 − 4iFzz|φ|2 − 2id(φDφ)

]
i

2
dz ∧ dz

(7)

Using Stokes’ Theorem, the total derivative term d(φDφ) vanishes. This combined with

(3) shows that the second integral may be simplified

∫
Σ

(−4iFzz)
i

2
dz ∧ dz =

∫
Σ

F = 2πN (8)

Hence the Yang-Mills-Higgs energy functional may be written as

E(A, φ) =

∫
Σ

[(
−2i

Ω
Fzz − (1− |φ|2)

)2

+
2

Ω
|Dzφ|2

]
i

2
Ωdz ∧ dz + 4πN. (9)

Since the integrand is the sum of non-negative terms, it is clear that the function attains

its minimum only when A and φ satisfy

− 2i

Ω
Fzz = 1− |φ|2 (10)

Dzφ = 0 (11)

The first-order equations (10) and (11) obtained are called the Bogomolny vortex

equations [2]. Equation (10) may also be written more invariantly as

? F = 1− |φ|2. (12)
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2.2 The Vortex Equations and Taubes Equation

The Bogomolny equations (10) and (11) may be uncoupled by first looking at the latter

equation. Expanding out the covariant derivative term gives ∂zφ−iAzφ = 0. Rearranging

it gives a formula for Az.

Az = −i∂zφ
φ

= −i∂z log φ (13)

Since A is a U(1) connection, Az = Az. Hence Az = i∂z log φ. Applying equation (2)

yields a formula for Fzz given by

Fzz = ∂zAz − ∂zAz

= ∂z(−i∂z log φ)− ∂zi∂z log φ

= −i∂z∂z log |φ|2

= −i1
4
∇2 log |φ|2

(14)

where ∇2 = ∂x∂y is the standard Euclidean Laplacian. Substituting (14) back into the

first Bogomolny equation (10) results in Taubes’ equation [8] [9]

− 1

2Ω
∇2 log |φ|2 = 1− |φ|2 (15)

Taubes’ equation allows one to solve directly for φ up to a choice of phase. This, in

turn, gives a solution for A, which may be determined using the Bogmolny equations

(10) (11).

For simplicity, make the substitution |φ|2 = e2u with u being a real function. In order to

do this, it must first be noted that Taubes’ equation (15) is only valid where φ is non-zero

and extending the domain of Taubes’ equation onto the zeros of φ requires supplementary
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delta terms need to be added. After substituting, the Taubes’ equation reads

− 1

Ω
∇2u = 1− e2u (16)

2.3 Degenerate Metrics

As noted by Baptista in [1], it is worth considering the degenerate metric

ds′2 := |φ|2Ωdzdz = e2uΩdzdz (17)

which will henceforth be referred to as the Baptista metric. The Baptista is not a

metric in the traditional sense, as it is degenerate at the zeros of φ. From the second

Bogomolny equation, we see that φ must be a holomorphic section with respect to the

complex structure on L induced by A. From this, it must that the zeros of φ, and hence

those of |φ|2, must occur at isolated points of Σ. It can also be shown that φ has N

zeros counted with multiplicity [8].

Looking at the Gaussian curvatures of Σ with metric ds2 that of Σ with the Baptista

metric ds′2 results in

K = − 1

2Ω
∇2 log Ω (18)

K ′ = − 1

2e2uΩ
∇2(2u+ log Ω) (19)

where K and K ′ are the curvatures with metrics ds2 and ds′2 respectively. Combining

and rearranging gives

−K +K ′e2u = − 1

Ω
∇2u (20)
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By comparing equation (20) with Taubes’ equation (16) it can be seen that

1− e2u = −K +K ′e2u (21)

2.4 Integrable Cases

The case where the metric ds2 has constant Gaussian curvature K = −1 has been

shown to be integrable [8]. In this case, equation (21) says that the curvature of Σ with

the Baptista metric must also have constant value K ′ = −1. These constraints allow for

the curvature equation (19) to reduce to Liouville’s equation as shown below.

First, make another change of variable by asserting that the Baptista metric ds′2 has

conformal factor e2v := Ω′ = e2uΩ. Substituting this back into equation (19) gives

K ′ = − 1

2e2v
∇22v (22)

which may be rearranged to get Liouville’s equation

∇2v = −e2v (23)

On a simply connected domain, Liouville’s equation (23) has solutions given by

e2v = Ω′ =
4

(1− |h(z)|2)2

∣∣∣∣dhdz
∣∣∣∣2 (24)

where h is an arbitrary local holomorphic function [5].
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Locally, there is an expression for Ω is given by

Ω =
4

(1− |z|2)2
(25)

Since |φ|2 = e2u was the ratio of the two metrics, dividing equation (24) by equation (25)

yields a coordinate expression for |φ|2

|φ|2 =
Ω′

Ω
=

(1− |z|2)2

(1− |h(z)|2)2

∣∣∣∣dhdz
∣∣∣∣2 (26)

Thus finding a suitable holomorphic function h on Σ will result in a vortex solution up

to a choice of gauge. Additionally, if one were to prescribe points p1, ..., pn at which φ

were to vanish, the function h would need to have ramification points at the pi.

For example, in [10], Witten constructed vortices on the hyperbolic plane with finite

Blaschke products. Using the Poincaré disk model of the hyperbolic plane, the

holomorphic function h was chosen to be of the form

h(z) =
N+1∏
m=1

z − am
1− amz

(27)

where each am satisfies |am| < 1.

2.5 Vortices from Hyperbolic Tessellations

The local formula from equation (26) was used by Maldonado and Manton to describe

a method of creating analytic hyperbolic vortex solutions satisfying certain symmetry

properties [7]. In their paper, they considered regular tessellations of the hyperbolic disk.

This was due to the result of the Uniformization Theorem stated below.
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Theorem 2.0.1 (Uniformization Theorem). Every Riemann surface is the quotient of a

free, proper, and holomorphic action of a discrete group on its universal covering. This

universal covering is biholomorphic to one of:

1. the Riemann sphere, S2

2. the complex plane, C

3. the unit disk in the complex plane, D

It has been shown that when Σ is a compact Riemann surface of genus 2 or greater, its

universal covering is biholomorphic to the unit disk D. The fundamental domain of Σ

would then tessellate D. Hence, using the Poincaré disk model, one only needs to find

holomorphic maps from the fundamental domain with suitable ramification points to

create vortex solutions. Maldonado and Manton’s method does so by making heavy use

of the Riemann Mapping Theorem, Carathéodory’s Theorem, and the Schwarz Reflection

Principle [7]. The statements of these theorems are stated below without proof [3] [4].

Theorem 2.0.2 (Riemann Mapping Theorem). If U is a simply connected subset of the

complex plane C which is not the entire complex plane, then there exists a biholomorphic

mapping f (called the Riemann mapping) from the open unit disk D to U .

Theorem 2.0.3 (Carathéodory’s Theorem). If f maps the open disk D conformally onto

a bounded domain U ⊂ C, then f has a continuous one-to-one extension to the closed

disk D if and only if ∂U is a Jordan curve.

It should be noted here that the unit disk D and its closure D in the statement of the

above theorems may be replaced by the extended upper half-plane H and its closure H
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respectively. This is because f may be precomposed with the Möbius transformation

g(z) =
z − i
z + i

(28)

which maps H onto D conformally.

Theorem 2.0.4 (Schwarz Reflection Principle). Suppose f is holomorphic on the upper

half-plane H, has a continuous extension to an interval I ⊂ R with f(I) ⊂ R. Extend f

to the lower half-plane L = {z : z ∈ H} by setting

f(z) = f(z), z ∈ L (29)

then the extended function is holomorphic on H ∪ I ∪ L.

The desired holomorphic mapping is constructed by applying the Riemann Mapping

Theorem and Carathéodory’s Theorem to hyperbolic polygons as they satisfy the

conditions of both theorems. Without loss of generality, the Schwarz Reflection

Principle may also be applied about any edge of the polygon. This is because one can

map the edge onto the real axis using a Möbius transformation, reflect it, and then

apply the inverse Möbius transformation to map the edge back onto itself. The aim of

this procedure is to construct a holomorphic mapping from the unit disk D to the upper

half-plane H given a tessellation of the unit disk and a conformal mapping f : H → P

where P is a hyperbolic polygon.

2.5.1 Hyperbolic Polygons

To get the holomorphic map h, hyperbolic polygons in the Poincaré disk model are

considered. Geodesics in this model are either lines passing through the origin, or circles
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intersecting the boundary of the unit disk ∂D at right angles. Hyperbolic n-gons are

defined to be open subsets of D bounded by n geodesics. Before h can be constructed,

some preliminary results and technical lemmas will be needed. These will be proved in

Appendix A.

Proposition 2.0.5. Let P be a hyperbolic polygon. Let r(z) be the map reflecting P over

one of its edges E and let g(z) be a Möbius transformation mapping E onto the real axis.

Then r = g−1 ◦ g and r(P ) is also a hyperbolic polygon.

Lemma 2.0.6. The composition of an even number of reflections may be expressed as a

Möbius transformation.

Proposition 2.0.7. Let P1 be a hyperbolic polygon and let P2 be the image of P1 under two

successive Schwarz reflections equivalent to a Möbius transformation g. Let f1 : H→ P1

be a Riemann mapping onto P1 and f2 : H → P2 be a Riemann mapping onto P2 given

by f2 = g ◦ f1. Denote their respective extensions (via the Schwarz Reflection Principle)

onto the intermediate polygon P ′ by F1 and F2 respectively. Then F−1
1 and F−1

2 agree on

P ′ (see figure 1 below).

Figure 1: Successive Schwarz Reflections

P1

P2

P ′

We prove one final result regarding biholomorphic maps and the Schwarz Reflection
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Principle.

Proposition 2.0.8. Let f be a Riemann mapping from the upper half-plane H onto an

open set U ⊂ C. Furthermore, suppose that an interval I ∈ R is a segment of the

boundary of U (i.e. I ⊂ ∂U ∩ R). Then the Schwarz Reflection of f over I is also a

biholomorphic map.

Proof. By Carathéodory’s Theorem, f may be extended onto its boundary continuously.

In particular, an interval I ∈ R is a subset of ∂U the Schwarz Reflection Principle may

be applied to f . By the statement of the Reflection Principle, its reflection (also

denoted f) is holomorphic on H ∪ I ∪ L. Since f is biholomorphic, for any z ∈ H, we

have that f ′(z) 6= 0.

For z ∈ L, we see that

f ′(z) = lim
|h|→0

f(z + h)− f(z)

h

= lim
|h|→0

f(z + h)− f(z)

h

= lim
|h|→0

(
f(z + h)− f(z)

h

)
= f ′(z)

(30)

Hence f ′(z) 6= 0 for each z ∈ H ∪ L and thus f is conformal and biholomorphic on

H ∪ L.

For z ∈ I, since f is holomorphic and one-to-one on I, it is invertible and hence

biholomorphic on I. Thus the Schwarz Reflection of f over I is biholomorphic.

11



2.5.2 Construction of a Vortex Solutions

Results from the previous section allow for the construction of the desired map h.

Suppose T is a tessellation of the Poincaré disk using hyperbolic n-gons. We may divide

an n-gon P into congruent polygonal sections P1, ..., Pk using geodesics from its center

to its boundary (see figure 2). By the Riemann Mapping Theorem, there exists a

biholomorphic mapping f1 from the upper half-plane H onto P1. By Carathéodory’s

theorem f1 extends continuously onto its boundary. Using the Schwarz Reflection

Principle, f1 may be extended further onto other sections sharing an edge with P1. For

example, in the diagram below, the map f1 : H → P1 has, by Schwarz reflection,

extensions onto P2 and P6. It should also be noted that though it is not depicted in the

diagram, f1 would also have an extension onto another triangular region in another

n-gon by reflection over its remaining edge.

Figure 2: Dividing an n-gon into congruent polygonal sections

P1

P2

P3

P4

P5

P6

Multiple maps from the complex plane C onto different areas of the Poincaré disk are

attained by composing f1 with various Möbius transformations. The ones of particular

interest are the ones composed with Möbius transformations equivalent to an even

number of reflections (see figure 3). For example, in the diagram below, g1 ◦ f and f

overlap on P2, g1 ◦ f and g2 ◦ f overlap on P4, and g2 ◦ f and f overlap on P6.
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Figure 3: Overlapping Conformal Maps from Möbius Transformations

P1

P2

P3

P4

P5

P6

H

f

g1

g2

It is clear that each of these maps are multi-valued since Schwarz reflections are applied

to each edge of the polygonal section, however the maps are conformal when restricted

to a single section. Hence the inverse maps are single-valued holomorphic functions.

Proposition 2.0.7 shows that the procedure of composing f with Möbius transformations

in general ensures that the inverse maps agree on their common domains. By the

Indentity Theorem, they may be combined into a single holomorphic function F .

So far, this method has left out the vertices of each of the polygonal sections. However,

since F was constructed via Schwarz reflection around each vertex, it is clear that F is

continuously extendable onto the vertices of each polygonal section. The Riemann

Extension Theorem asserts that F can also be extended holomorphically extended onto

the vertices of the tessellation T . Hence F is a holomorphic map from D onto H

satisfying compatibility requirements with Schwarz reflection and a tessellating group

action on D.

The same technique may be applied to another hyperbolic tessellation T ′ of D using m-

gons. From this another holomorphic map G : D → H satisfying similar compatibility
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requirements is obtained. By selecting a base polygonal section Q1 of the new tessellating

m-gon Q, it is possible to define a new map h, which maps P1 onto Q1 by requiring that

h|P1 = (G|Q1)
−1 ◦ F |P1 (31)

where (G|Q1)
−1 denotes the inverse of G when restricted to Q1. Even after additionally

requiring that h preserve the reflection action on each of the tessellating polygons (i.e.,

h ◦ r1|Pi = r2|Qj ◦ h where r1 and r2 are reflections over corresponding edges of

corresponding polygonal sections Pi and Qj of P and Q respectively), it can be seen

that with certain restrictions, h is still well-defined. From the properties of both F and

G, it can be seen that h is holomorphic and conformal everywhere on D except at the

vertices of the tessellation T .

As mentioned previously, there are some conditions that need to be met in order to

assure that h will be well-defined. Firstly, the polygonal sections must both have the

same number of edges and vertices, else one of them will have additional possible

reflections. This means that Schwarz reflection cannot be compatible with the map.

Secondly, m must divide n, if not Schwarz reflecting P1 around the n-gon such that it

returns to its starting position would cause h to be multi-valued (see figure 4).
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Figure 4: Restrictions of the Method

(a) Polygonal sections must be the same

?

h

(b) m divides n

?

?

??

h

h

The method outlined above merely provides the existence of symmetric vortex solutions

on certain compact Riemann surfaces. Maldonado and Manton managed to calculate

the explicit form of some of these solutions by restricting their attention to hyperbolic

triangles [7], where the Riemann mapping is known and can be expressed in terms of

hypergeometric functions [4] [6]. Additionally, by forcing a doubling of angles at the

center and vertices, they were able to ensure that the map h and the Higgs field φ had

zeros there as well.

3.0 Extensions and Generalizations

Manton altered the Bogomolny vortex equations by allowing some of the coefficients to

take arbitrary values [8]. The equations he considered were of the form

−2i

Ω
Fzz = −C + C2|φ|2 (32)

Dzφ = 0 (33)

Though this now results in a two-parameter family of solutions, by rescaling the

connection A and the Higgs field φ, only five types of vortices remain. They are listed

below:
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Standard (Taubes) C = −1, C2 = −1
Bradlow C = −1, C2 = 0

Ambjørn-Olesen C = −1, C2 = 1
Jackiw-Pi C = 0, C2 = 1

Popov C = 1, C2 = 1

Table 1: The Five Types of Vortices

By also considering a modified Yang-Mills-Higgs energy functional

EC,C2(A, φ) =

∫
Σ

[
(∗F )2 − C

Ω
|Dφ|2 + (−C0 − C|φ|2)2

]
i

2
Ωdz ∧ dz (34)

it can be shown that the solutions to the new vortex equations are critical points of the

functional, though not necessarily minima. The latter can be seen by applying the same

method used in Section 2.1.

Using Euclidean tessellations and Schwarz-Christoffel mappings, it may be possible to

create Bradlow vortices on specific Riemann surfaces using the method outlined above.

Additionally, the same might be possible for spherical tessellations and Ambjørn-Olesen

vortices. Both these cases are more restrictive since there are only finitely many

Euclidean and spherical tessellations. Another possible consideration is whether it is

possible to relax the symmetry constraint imposed on the solutions by supposing other

tilings of the fundamental domain.

4.0 Conclusion

This paper has outlined a method of Maldonado and Manton [7] used to create vortex

solutions on compact hyperbolic Riemann surfaces. This method shows the existence of

symmetric vortex solutions on hyperbolic Riemann surfaces meeting certain
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requirements. It, however, does not provide an explicit form for the vortex unless the

Riemann mapping of the polygon being used is known explicitly as well.

Though this method was first applied onto hyperbolic surfaces, it may be possible to

alter it slightly and use it on other types of surfaces to create new vortex solutions.

Additionally, the symmetry imposed onto the solutions via the construction might be

possible to relax by altering Maldonado and Manton’s method.
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Appendix A Proofs of Propositions and Lemmas

Proof of Proposition 2.0.5

Proof. Since P is a hyperbolic polygon, its edges are either segments of lines which pass

through the origin or circles perpendicular to the unit disk. Consider the two cases:

Case 1: E lies on a line L: Since L passes through the origin, L is specified by

an angle θ, so L = {z ∈ C : z = teiθ, t ∈ R}. Let a, b, c be distinct points on L, so

a = a0e
iθ, b = b0e

iθ, c = c0e
iθ with a0, b0, c0 ∈ R. Consider the cross-ratio

g(z) = [z; a, b, c] =
(z − a)(b− c)
(z − c)(b− a)

=
(z − a0e

iθ)(b0e
iθ − c0e

iθ)

(z − c0eiθ)(b0eiθ − a0eiθ)

=
(z − a0e

iθ)(b0 − c0)

(z − c0eiθ)(b0 − a0)

(35)

If p = p0e
iθ ∈ L then,

g(p) =
(p0e

iθ − a0e
iθ)(b0 − c0)

(p0eiθ − c0eiθ)(b0 − a0)

=
(p0 − a0)(b0 − c0)

(p0 − c0)(b0 − a0)
∈ R

(36)

So g maps L onto R and the only Möbius transformations which do so are of the above

form.

Reflection of a point z over L is given by

r(z) = e2iθz (37)
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Evaluating gives

g ◦ r(z) = g(e2iθz)

=
(ze2iθ − a0e

iθ)(b0 − c0)

(ze2iθ − c0eiθ)(b0 − a0)

=
(z − a0e

−iθ)(b0 − c0)

(z − c0e−iθ)(b0 − a0)

=
(z − a0eiθ) (b0 − c0)

(z − c0eiθ) (b0 − a0)

= g(z)

(38)

Case 2: E lies on a line C: Suppose C has center z0 and radius r. Again, let

a, b, c be distinct points on C, so a = z0 + reiθa , b = z0 + reiθb , c = z0 + reiθc . Once more,

consider the cross-ratio

g(z) = [z; a, b, c] =
(z − a)(b− c)
(z − c)(b− a)

=
(z − (z0 + reiθa))((z0 + reiθb)− (z0 + reiθc))

(z − (z0 + reiθc))((z0 + reiθb)− (z0 + reiθa))

=
(z − (z0 + reiθa))(eiθb − eiθc)
(z − (z0 + reiθc))(eiθb − eiθa)

(39)

If p = z0 + reiθp ∈ C, then

g(p) =
((z0 + reiθp)− (z0 + reiθa))(eiθb − eiθc)
((z0 + reiθp)− (z0 + reiθc))(eiθb − eiθa)

=
(eiθp − eiθa)(eiθb − eiθc)
(eiθp − eiθc)(eiθb − eiθa)

(40)

It can be seen that
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g(p) =
(e−iθp − e−iθa)(e−iθb − e−iθc)
(e−iθp − e−iθc)(e−iθb − e−iθa)

(41)

=
( e
iθa−eiθp
eiθpeiθa

)( e
iθc−eiθb
eiθbeiθc

)

( e
iθc−eiθp
eiθpeiθc

)( e
iθa−eiθb
eiθbeiθa

)
(42)

=
(eiθa − eiθp)(eiθc − eiθb)
(eiθc − eiθp)(eiθa − eiθb)

(43)

= g(p) (44)

Hence g(p) ∈ R and so g maps C (and hence E) onto R. Once again, the only Möbius

transformations mapping C to R are of the above form.

The reflection of a point z over C is given by

r(z) =
r2

z − z0

+ z0 (45)

Evaluating gives
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g ◦ r(z) = g

(
r2

z − z0

+ z0

)
(46)

=
( r2

z−z0 + z0 − (z0 + reiθa)(eiθb − eiθc)
( r2

z−z0 + z0 − (z0 + reiθc)(eiθb − eiθa)
(47)

=
( r
z−z0 − e

iθa)(eiθb − eiθc)
( r
z−z0 − e

iθc)(eiθb − eiθa)
(48)

=
( r
z−z0 − e

−iθa) (e−iθb − e−iθc)
( r
z−z0 − e

−iθc) (e−iθb − e−iθa)
(49)

=
( re

iθa−(z−z0)
(z−z0)eiθa

) ( e
iθc−eiθb
eiθbeiθc

)

( re
iθc−(z−z0)

(z−z0)eiθc
) ( e

iθa−eiθb
eiθbeiθa

)
(50)

=
(z − (z0 + reiθa)) (eiθb − eiθc)
(z − (z0 + reiθc)) (eiθb − eiθa)

(51)

= g(z) (52)

Again, r = g−1 ◦ g.

To show that r(P ) is also a hyperbolic polygon, use the fact that Möbius

transformations and reflections map lines and circles onto other lines and circles to get

that r(P ) is bounded by lines and circles in the complex plane. In either case, by

geometrical arguments, the boundary of the unit disk ∂D must be mapped onto itself by

the reflection. Since the edge is fixed by the reflection and lies inside the unit disk D, by

continuity, D must also be mapped onto itself by r. Thus r(P ) ⊂ D. Furthermore, since

Möbius transformations and reflections are angle-preserving, the images of the other

edges must lie on lines or circles which intersect ∂D at right angles and are hence

geodesics in the Poincaré disk model. Hence r(P ) is a hyperbolic polygon.
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Proof of Lemma 2.0.6

Proof. By Proposition 2.0.5 the reflections r1 and r2 may be written as r1 = f−1 ◦f, r2 =

g−1 ◦ g where f and g are Möbius transformations. Thus,

r2 ◦ r1(z) = g−1(g(f−1(f(z))) (53)

Without loss of generality, suppose that f and g have the forms

f(z) =
az + b

cz + d
(54)

g(z) =
αz + β

γz + δ
(55)

where a, b, c, d, α, β, γ, δ ∈ C. Using this, it can be shown that

f−1(f(z) =
(ad− bc)z + (bd− bd)

(ac− ac)z + (ad− bc)
(56)

g(f−1(f(z))) =
[α(ad− bc) + β(ac− ac)]z + [α(bd− bd) + β(ad− bc)]
[γ(ad− bc) + δ(ac− ac)]z + [γ(bd− bd) + δ(ad− bc)]

(57)

Hence g ◦−1 ◦f is a Möbius transformation. Since the compositions of Möbius

transformations are also Möbius transformations, r2 ◦ r1 = g−1 ◦ g ◦−1 ◦f is a Möbius

transformation.

Proof of Proposition 2.0.7

Proof. Denote the two reflections r1 and r2, so g = r2 ◦ r1. Let h and k be Möbius

transformations mapping the reflecting edges of P1 and P2 respectively onto the real line.
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Hence the Schwarz reflections F1 and F2 are given by

F1 = h−1 ◦ h(f1) (58)

F2 = k−1 ◦ k(f2) = k−1 ◦ k(g(f)) (59)

Proposition 2.0.5 says that r1 = h−1 ◦ h and that r−1
2 = k−1 ◦ k. Hence

F1 = r1 ◦ f1 (60)

F2 = r−1
2 ◦ g ◦ f1 = r1 ◦ f1 (61)

Thus F−1
1 and F−1

2 agree on P ′.
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